GYIG OpenIR  > 研究生  > 学位论文
云南兰坪金顶超大型铅锌矿区镉的环境地球化学研究
其他题名Environmental Geochemistry of Cadmium in Jinding Lead and Zinc Mine Area in Yunnan, China
李航
2007-06-13
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词 水地球化学 环境污染 超富集植物 金顶铅锌矿
摘要矿产资源开采利用过程中导致的重金属环境污染问题日益严重。我国铅锌矿资源丰富,其开采利用过程中镉的环境污染也日益突出。本文通过对云南兰坪金顶Pb-Zn矿区矿床开采利用过程中镉等重金属元素的环境地球化学行为及矿区生态环境的研究,得出如下主要结论。 1. 矿石淋滤实验表明矿区部分氧化铅锌矿石可以很快被再次氧化或者被溶解并释放出大量镉等有害元素,滤出元素可以迅速发生沉淀或被沉淀物包裹,其释放能力表现为Zn>Pb>Cd。铅锌氧化矿石中菱锌矿组分含量是影响镉淋失的主要因素。在开放体系的水-岩作用下,矿区岩石、矿物的自然风化极易造成当地水系统中镉污染。 2. 矿区不同岩(矿)石中镉含量分布差异比较大,围岩中镉含量为50-650 ppm,平均310 ppm,原生矿中镉含量为14-2800 ppm,平均767 ppm,氧化矿中镉含量为110-8200 ppm,平均1661 ppm,其平均值最高。Zn、Cd地球化学性质的差异导致了二者在原生矿和氧化矿中的不同地球化学分配特点,原生矿Zn/Cd高于氧化矿Zn/Cd,表明氧化环境中镉更容易在氧化矿中富集,而锌更容易被氧化析出到环境中。氧化矿中Cd与Ca呈负相关,这表明Cd的富集和Ca的氧化淋失是同时进行的,并且还可能有Cd对Ca的类质同像代替存在。 3. 矿区上游对照区土壤中的高含量Cd浓度是因土壤母质层重金属高背景值造成的,而非人为污染。矿区中心区土壤受到严重Cd污染,可能与选厂、采场废石堆、尾矿库和露采矿山大范围暴露有关。矿区沿沘江下游两岸土壤中Cd含量远远超出上游土壤背景值和金顶全区土壤背景值,这可能是与污水灌溉有关。通过加权综合污染指数评价法发现矿区土壤污染的主要因子是Cd,其次是Zn和Pb,矿区土壤重金属污染贡献顺序为:Cd>Zn>Pb。矿区土壤污染主要表现为:矿区土壤污染有从中心区向沘江下游扩散区土壤中蔓延的趋势。 4. 矿区水体中出现较高含量的镉,高出天然河流中镉含量的50-100倍。矿区架崖山、北厂和跑马坪等采矿区水体中镉浓度范围在15-30 µg/L之间。矿区水体中镉含量水平表现为:矿山浅层地下水>矿山溪流水>沘江河水。研究结果表明,矿区沘江下游河段水体明显受镉污染,其中水体中镉的平均含量为15.7 µg/L,悬浮物中镉含量为49.3 mg/kg,沉积物中镉含量为203.7 mg/kg。矿区载镉岩石和矿物的自然风化是造成矿区水环境中镉污染的直接原因。 5. 跑马坪采场的废弃石具有较低的Cd含量,而北厂、架崖山采场的废弃石具有较高的Cd浓度,可能与废弃矿石类型本身差异有关。尾矿剖面中的Cd含量,在表层中随剖面深度呈递减趋势,在中层随剖面深度变化不明显,而在底层中明显富集。尾矿库表层尾矿样品中弱酸提取态和可还原态Cd高于底层尾矿样品,相比之下,表层尾矿中Cd等重金属元素易于释放到环境中,对环境的潜在危害大。老尾矿库尾矿砂中Cd金属总量高于新尾矿库尾矿砂,可能还是因为选矿工艺、技术的差异造成的。 6. 矿区污染段水体中硫同位素值较低,远远低于上游非污染区硫同位素值。矿区水体中δ34S值保持了金顶铅锌矿山源区矿山物质硫同位素的特征,显示了矿山来源物质的影响。根据水体硫酸盐中硫同位素稀释原理,研究发现沘江下游水体SO42-中85 %的硫来源于矿山物质。 7. 从矿区筛选出Cd、Zn、Pb的超富集植物共有4种:其中Cd超富集植物有2种,分别是本地生条裂萎陵菜(Potentilla lancinata Card. In Lecomte)和辣子草(Galinsoga parviflora Cav.);Zn超富集植物仅发现有1种植物,为节节草(Equisetum ramosissmum Desf.);Pb超富集植物发现了1种植物,为毛莲菜(Picris hieracioides L.)。这些植物均具备了超富集植物的基本特征,在污染土壤治理与修复方面具有一定的实践意义。 8. 建立了金顶铅锌矿山(床)地质环境模型。Cd的释放、迁移扩散模式为:雨水淋滤时,矿山固体废弃物产生富Cd的酸性或弱酸性矿山排水,通过下渗淋滤发生测向和垂向迁移,进入周边水体和土壤,然后被水系沉积物中针铁矿、方解石等吸附,并在沉降物中沉淀富集,导致矿区主要河流沘江水体的自净能力下降,加速水体的进一步恶化,破坏生物生存环境。矿区受污染水体、土壤和大气中的有害物质通过生物链进入动植物体内,进而危害人类健康。
其他摘要The heavy metal contamination related to mining is increasingly serious. The mineral resource of lead (Pb) and zinc (Zn) is abundant in China, and the consequent cadmium (Cd) pollution during mining and smelting is quite serious and presents a high environmental concern. This thesis aims to understand the geochemical distribution and dispersion of Cd and other associated heavy metals to assess their ecological environment effects in the Jinding Lead and Zinc Mine area in Yunnan Province, China as a case study. The cope of work of this thesis focuses on the study of distribution and dispersion of Cd in rocks, ores, soils, waters, river sediments and vegetation and their sequent environment impacts, and the following findings are obtained. 1. The ore leaching experiment shows that the oxidized ores of Pb and Zn are susceptibly to be oxidized or dissolved and readily release Cd and other deleterious heavy metals into the ambient environment. These leached elements in the leachate may deposit rapidly with the order of Zn>Pb>Cd. The mineral of smithsonite in the oxidized ore is the key factor to drive Cd loss in leaching processes. In certain open system under rock and water interaction, the natural weathering of Cd-rich rocks and minerals shows potential environmental risk to the aquatic ecosystem of the local catchment. 2. The concentrations of Cd vary in different rocks and ores in the Jinding Pb and Zn mine area. In host rocks, Cd concentrations range from 50 to 650 ppm with an average at 310 ppm. In primary ores, Cd concentrations range from 14 to 2800 ppm with an average at 767 ppm. However, in the oxidized ores, Cd concentrations show the highest enrichment with a range of 110 to 8200 ppm and an average at 1661 ppm. The ratio of Zn/Cd in primary ores is higher than that of oxidized ores, which applies that Cd is rich in oxidized ore but Zn is released to the environment. The concentrations of Cd and Ca in oxidized ores present negative correlation and it suggests the Cd enrichment and Ca loss or isomorphic substitution of Cd for Ca in the weathering progress. 3. Cd in soil outside the Jinding Pb and Zn mine area presents high concentrations, which is above the background value of China soil and may be attributable for the reiogional anomaly of Cd. However, the high concentrations of Cd causing Cd pollution in soil of the mine area are related to mill factories, tailings piles, waste rock drainage and bedrock of mine. Cd concentrations in soil along the Bijiang River are above the baselines of both the background area and attributable for the agricultural irrigation by Cd-polluted river water. Based on the weighted pollution index assessment, Cd is the main metal pollutant in the local soil rather than Zn and Pb by the order of Cd> Zn> Pb. The metals pollution in soil tends to disperse from the mine area to the downstream of Bijiang River. 4. The mining activities of Jinding Pb and Zn Mine tend to release Cd into the local aquatic ecosystem. The water bodies in mine area present high Cd concentrations from 15 to 30 µg/L, exceeding 50 to 100 times of natural water. The dispersion pattern of Cd in the local water system presents the tendency of shallow groundwater of mining area > stream water of mine area > river water of Bijiang River. The river water of lower reach of Bijiang River is obviously polluted by Cd with an average at 15.7 µg/L in water, 49.3 mg/kg in suspended sediment, and 203.7 mg/kg in river sediment. The enrichment of Cd in the local aquatic system of the mine area is related to the natural weathering process of Cd-rich rocks and minerals, and presents high ecological risk. 5. Cd concentrations also vary in the mining solid wastes. The waste rocks present low concentrations of Cd at Paomaping waste rock dump but higher Cd contents in Beichang and Jiayashan waste rock dumps due to the differences of the types of waste rocks in individual waste rock dump. In respect to Cd concentrations in the profile of the tailing pond, they present a decreasing tendency with the depth in surface layer, irregular distribution in the middle layer, and significant enrichment in down layer. Concentrations of Cd in acid exchangeable and reductive forms in surface layer of tailing pond are higher than in deep layer, and suggest that Cd in surface layer of tailing pond is easily released to the ambient environment and pose a high environmental risk. Total Cd contents in the newly deposited tailing pond are lower than those in the old ones due to improved ore processing technology. 6. The determined δ34S values in polluted river waters are obviously lower than those of unpolluted river upstream waters of Bijiang. The δ34S value in the water bodies in mine area are similar to those in minerals from the mine area, and suggests for contribution of sulfur and associated metals from the mine area. Based on the theory of dilution of SO42- in water, about 85% S in water of Bijiang River is estimated to originate from the mine area. 7. The metals dispersed from the mining activity tend to enrich in certain local vegetation. Four species of herbaceous plants are identified as hyperaccumulators for Cd, Zn and Pb. Among them, the species of Potentilla lancinata Card In Lecomte and Galinsoga parviflora Cav. are hyperaccumulators for Cd, Equisetum ramosissmum Desf. for Zn, and Picris hieracioides L. for Pb. These four identified hyperaccumulators are significant for ecological remediation on local polluted soil by Cd, Zn and Pb. 8. The geological environment model of Jinding Pb-Zn mine was proposed. This model effectively demonstrates the processes of Cd release and transportation in the ambient environmental of the Jinding Mine area. The Cd-rich acid mine drainage produced from rock and ore weathering tends to be dispersed and transported to the ambient soil and water bodies. The Cd released into soil causes soil pollution. The Cd transported into water was adsorbed by goethite and calcite to be deposited in river sediments. The Cd in both river water and river sediment tends to deteriorate the local aquatic ecosystem quality. The enrichment of Cd released from the mining activity may finenally enter the food chain to cause human health problem.
页数133
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3296
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
李航. 云南兰坪金顶超大型铅锌矿区镉的环境地球化学研究[D]. 地球化学研究所. 中国科学院地球化学研究所,2007.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10001_20041800651402(2632KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李航]的文章
百度学术
百度学术中相似的文章
[李航]的文章
必应学术
必应学术中相似的文章
[李航]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。