GYIG OpenIR  > 研究生  > 学位论文
贡嘎山地区大气中不同形态汞的分布规律及影响因素
其他题名Mercury speices in ambient air in Mt. Gongga area: Distributions and influence factors
付学吾
2008-05-26
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词贡嘎山 不同形态大气汞 分布规律 释放源 沉降通量
摘要汞是一种有毒的人体非必需重金属元素,是一种全球性污染物。大气在全球汞生物地球化学循环中占极其重要的地位,20世纪80年代末和90年代初,在没有人为和自然汞污染源的北欧和北美偏远地区的大片湖泊中发现的鱼体高甲基汞负荷就是由人为排放的汞通过大气长距离迁移后的沉降造成的。我国被认为是全球汞排放最多的国家,大量的汞排放到大气中势必会造成不同形态大气汞浓度以及大气汞沉降通量的升高,然而就目前而言,国内关于长时间分辨率的大气汞分布规律及汞沉降通量的系统研究还比较缺乏。 2005年5月到2007年5月,采用高时间分辨率大气自动测汞仪、镀KCl石英扩散管和颗粒汞微型捕汞管对贡嘎山地区大气中的气态总汞(TGM)、活性气态汞(RGM)和颗粒汞(TPM)进行了为期2年的系统监测;同时,系统的采集分析了贡嘎山地区的大气降水、植物叶片和河流水体样品,对大气汞的干、湿沉降进行了研究,并初步探讨了贡嘎山地区汞的输入和输出。主要得到以下结论: (1) 贡嘎山大气本底站两年的大气气态总汞的几何平均浓度为3.94±1.16 ng m-3,显著高于欧洲和北美同类型地区的大气气态总汞浓度,但和亚洲一些同类型地区的监测结果较为一致;和国内城市等受人为污染区域的大气气态总汞浓度相比,贡嘎山的浓度明显偏低,但略高于长白山大气本底站的气态总汞年均浓度。以上说明,贡嘎山地区的监测结果基本上反映了亚洲特别是我国西南偏远地区的大气汞的含量水平,说明我国人为活动的汞排放,已经造成了一定程度的大气汞污染。 (2) 活性气态汞和颗粒汞表现出和气态总汞不一致的分布特征,贡嘎山地区的活性气态汞平均浓度为6.2±3.9 pg m-3,颗粒汞的平均浓度为30.7±32.1 pg m-3,分别占到大气总汞的0.2%和0.8%,和国外偏远地区的研究结果一致。而活性气态汞和颗粒汞较高的沉降速率和较短的大气迁移距离是导致活性气态汞和颗粒汞偏低的主要原因。 (3) 贡嘎山不同功能区(特别是取暖季节)的大气气态总汞浓度明显高于全球背景区的平均浓度,且具有显著的空间分布特征:城区(8.63~22.5 ng m-3)>乡镇(4.74 ng m-3)>村落(2.55~8.83 ng m-3)>区域参照点(1.65~3.57 ng m-3)。 (4) 西南地区较高的汞释放背景是贡嘎山地区大气气态总汞偏高的一个重要原因;另外,石棉地区的金属冶炼活动、城市等人口集中地区的汞释放是造成该地区大气气态总汞浓度升高的区域性污染源。 (5) 气态总汞和颗粒汞表现出冬季>秋季>春季>夏季的季节性分布规律,而活性气态汞的季节性分布规律为春季>秋季>夏季>冬季。影响气态总汞和颗粒汞季节性变化的因素有释放源强度、气象条件(特别是风向)、光化学反应和干沉降速率的季节性变化;而活性气态汞的季节性变化则可能与大气光化学反应速率以及湿沉降的季节性变化有关。 (6) 贡嘎山地区海拔1600米和3000米空旷处的大气降水的湿沉降通量分别为9.1和26.1 μg m-2 yr-1,而森林地区的湿沉降通量可达57.0 μg m-2 yr-1;贡嘎山地区大气汞的干沉降通量51.9 μg m-2 yr-1,其中约15.9 μg m-2 yr-1(31 %)来自于植物落叶的沉降。 (7) 贡嘎山地区是大气汞的汇,仅泸定县的年均大气汞净沉降量就达142 kg yr-1,且绝大部分(>95%)进入了森林生态系统,而非森林地区的大气汞输入和输出则基本平衡。
其他摘要Abstract: Mercury is known as a toxic and nonessential heavy metallic element, which can be transported over the global scale. The transport of mercury in the atmosphere plays a vital role in the biogeochemistry of mercury in the environment. In the late 1980s and early 1990s, long-range transport of mercury in the atmosphere had caused serious mercury pollution problems in fishes from lakes in Northern Europe and Northern America, in which there were no anthropogenic and natural emission sources. China is regarded as the largest mercury emission source in the world and this probably result in the high level of mercury species in the atmosphere and high deposition flux of mercury. However, there is still a less of long-term observations of atmospheric mercury species and deposition fluxes, to our best knowledge, have been made in China. During May 2005 and May 2007, measurements of total gaseous mercury (TGM), reactive gaseous mercury (RGM), and total particulate mercury (TPM) were carried out in Mt. Gongga area by using an automatic and high time resolution atmospheric mercury analyzer, KCl coated denuders, and Mini particulate matters sampling traps, respectively. Moreover, precipitation samples, foliar leaves, and stream-water samples were also collected in Mt. Gongga area, to study mercury deposition fluxes and elucidate the input and output of mercury in this upland area. Some conclusions are as follows: (1) The two-year concentrations of total gaseous mercury in the Mt. Gongga atmospheric baseline station were averaged to be 3.94±1.16 ng m-3, and this value is much higher than those observed from remote areas in Europe and Northern America, but it is comparable to those observation results in the remote areas in Asia. The TGM concentration in Mt. Gongga area is much lower than those observed from some urban areas in China, but it is slightly higher than the result obtained in Mt. Changbai. The distribution of TGM in ambient air in Mt. Gongga suggests the air in China and even Asia are mercury polluted because of anthropogenic emissions. (2) Average RGM and TPM concentrations in Mt. Gongga were 6.2±3.9 and 30.7±32.1 pg m-3, respectively. The RGM and TPM concentration in Mt. Gongga area are quite consistent with those observed from remote areas in other countries, and this differs significantly with the distribution of TGM. Higher deposition fluxes and restricted transport ability of RGM and TPM were the main reasons attributed to the lower RGM and TPM concentrations in this area. (3) TGM concentrations showed a clear spatial distribution pattern on the descending order: urban areas (8.63~22.5 ng m-3) >towns (4.74 ng m-3) >villages (2.55~8.83ng m-3) >regional background sites (1.65~3.57 ng m-3), and TGM concentrations in these four environmental function zones especially in heating season were all elevated compared to the global average TGM concentration in remote areas. (4) Great anthropogenic emissions in Southwestern China contributed significantly to the elevated atmospheric concentrations in Mt. Gongga area. Besides, regional emission sources including non-ferrous metal smelting activities, human activities in some population centers (eg. Urban areas) also played important roles. (5) Total gaseous mercury and total particulate mercury showed a remarkable seasonal distribution pattern: winter, autumn, spring, and summer, listed in the descending order; while reactive gaseous mercury was observed on the descending order of spring, autumn, summer, and winter. Seasonal variations of emission sources, meteorological parameters especially wind direction, photochemical reactions, and dry deposition velocity of atmospheric mercury played important roles in the seasonal variations of TGM and TPM in ambient air; while the seasonal distribution of RGM in ambient air might be attributed to the seasonal variations of photochemical reactions and wet scavenge processes. (6) The wet deposition fluxes of mercury in Mt. Gongga area at 1600 and 3000 meters above sea level were 9.1 and 26.1 μg m-2 yr-1, respectively, and wet deposition flux in forest ecosystem reached 57.0 μg m-2 yr-1. Average dry deposition flux of mercury was calculated to be 51.9 μg m-2 yr-1, and 15.9 μg m-2 yr-1 of which was attributed to the mercury deposition of litterfall. (7) Mt. Gongga area acted as a great sink of atmospheric mercury, and the annual deposition flux of mercury in Luding County reached about 142 kg. Moreover, most (more than 95%) of the deposited mercury from atmosphere entered into forest ecosystem, while output and input of mercury in deforested area in Luding County were just balanced.
页数119
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3418
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
付学吾. 贡嘎山地区大气中不同形态汞的分布规律及影响因素[D]. 地球化学研究所. 中国科学院地球化学研究所,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10001_20051800651403(2861KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[付学吾]的文章
百度学术
百度学术中相似的文章
[付学吾]的文章
必应学术
必应学术中相似的文章
[付学吾]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。