GYIG OpenIR  > 矿床地球化学国家重点实验室
The relationship between stratabound Pb–Zn–Ag and porphyry–skarn Mo mineralization in the Laochang deposit, southwestern China: Constraints from pyrite Re-Os isotope, sulfur isotope, and trace element
Yu-Miao Meng;  Rui-Zhong Hu;  Xiao-Wen Huang;  Jian-Feng Gao;  Liang Qi;  Chuan Lyu
2018
Source PublicationJournal of Geochemical Exploration
Volume194Pages:218-238
Abstract

The Laochang polymetallic deposit is located in the Sanjiang Tethyan metallogenic province of southwestern China. This deposit contains stratabound (and locally vein-type) Pb–Zn–Ag mineralization and underlying porphyry–skarn Mo mineralization. The stratabound Pb–Zn–Ag mineralization is characterized by massive sulfide ores composed mainly of pyrite, sphalerite, galena, and minor chalcopyrite, whereas the underlying porphyry–skarn Mo mineralization is characterized by quartz–sulfide veins comprising mainly pyrite, chalcopyrite, molybdenite, and minor sphalerite and galena. The age and origin of the stratabound Pb–Zn–Ag mineralization has long been debated, and its relationship to the porphyry–skarn Mo mineralization remains unknown. Integrated pyrite Re-Os isotope, sulfur isotope, and in situ trace element data are used here to constrain the age and origin of both types of mineralization and their genetic relationships. Pyrite related to porphyry–skarn Mo mineralization yields a Re-Os isochron age of 47.3 ± 4.8 Ma, which is consistent with a previous molybdenite Re-Os age of the quartz–sulfide ores and zircon U-Pb ages of the granite porphyry (~44–50 Ma). Pyrite from the stratabound Pb–Zn–Ag mineralization failed to yield a geologically meaningful age, but associated sphalerite and galena have a Re-Os isochron age of 308 ± 25 Ma (Liu et al., 2015), which is consistent with the Carboniferous age of the host basalts. Pyrite, sphalerite, galena, and chalcopyrite from the stratabound Pb–Zn–Ag mineralization have δ34S values (−2.1 to 0.5‰; average 0.48‰) indistinguishable from those of sulfides from the porphyry–skarn Mo mineralization (−4 to 1.9‰; average 0.52‰). Initial Os isotope ratios indicate a mainly crustal origin for both types of mineralization. The calculated (Se/S)fluid and Co/Ni values of pyrite from the stratabound Pb–Zn–Ag mineralization indicate a mixed sedimentary and hydrothermal origin, with a significant magmatic contribution. The identification of a magmatic component, Eocene sulfide mineralization, and phyllic and propylitization alteration in stratabound Pb–Zn–Ag ores indicates that the magmatic–hydrothermal component reflects the overprinting of Carboniferous volcanogenic massive sulfide mineralization by magmatic–hydrothermal fluids derived from an Eocene granite porphyry.

KeywordRe-os Geochronology pyrite trace Element stratabound Pb–zn–ag Porphyry–skarn Mo laochang
Indexed BySCI
Language英语
Document Type期刊论文
Identifierhttp://ir.gyig.ac.cn/handle/42920512-1/8702
Collection矿床地球化学国家重点实验室
Affiliation1.State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
Recommended Citation
GB/T 7714
Yu-Miao Meng;Rui-Zhong Hu;Xiao-Wen Huang;Jian-Feng Gao;Liang Qi;Chuan Lyu. The relationship between stratabound Pb–Zn–Ag and porphyry–skarn Mo mineralization in the Laochang deposit, southwestern China: Constraints from pyrite Re-Os isotope, sulfur isotope, and trace element[J]. Journal of Geochemical Exploration,2018,194:218-238.
APA Yu-Miao Meng;Rui-Zhong Hu;Xiao-Wen Huang;Jian-Feng Gao;Liang Qi;Chuan Lyu.(2018).The relationship between stratabound Pb–Zn–Ag and porphyry–skarn Mo mineralization in the Laochang deposit, southwestern China: Constraints from pyrite Re-Os isotope, sulfur isotope, and trace element.Journal of Geochemical Exploration,194,218-238.
MLA Yu-Miao Meng;Rui-Zhong Hu;Xiao-Wen Huang;Jian-Feng Gao;Liang Qi;Chuan Lyu."The relationship between stratabound Pb–Zn–Ag and porphyry–skarn Mo mineralization in the Laochang deposit, southwestern China: Constraints from pyrite Re-Os isotope, sulfur isotope, and trace element".Journal of Geochemical Exploration 194(2018):218-238.
Files in This Item:
File Name/Size DocType Version Access License
The relationship bet(9668KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Yu-Miao Meng;Rui-Zhong Hu;Xiao-Wen Huang;Jian-Feng Gao;Liang Qi;Chuan Lyu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yu-Miao Meng;Rui-Zhong Hu;Xiao-Wen Huang;Jian-Feng Gao;Liang Qi;Chuan Lyu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yu-Miao Meng;Rui-Zhong Hu;Xiao-Wen Huang;Jian-Feng Gao;Liang Qi;Chuan Lyu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: The relationship between stratabound Pb–Zn–Ag and porphyry–skarn Mo mineralization in the Laochang deposit, southwestern China_ Constraints from pyrite Re-Os isotope, sulfur isotope, and trace element data.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.